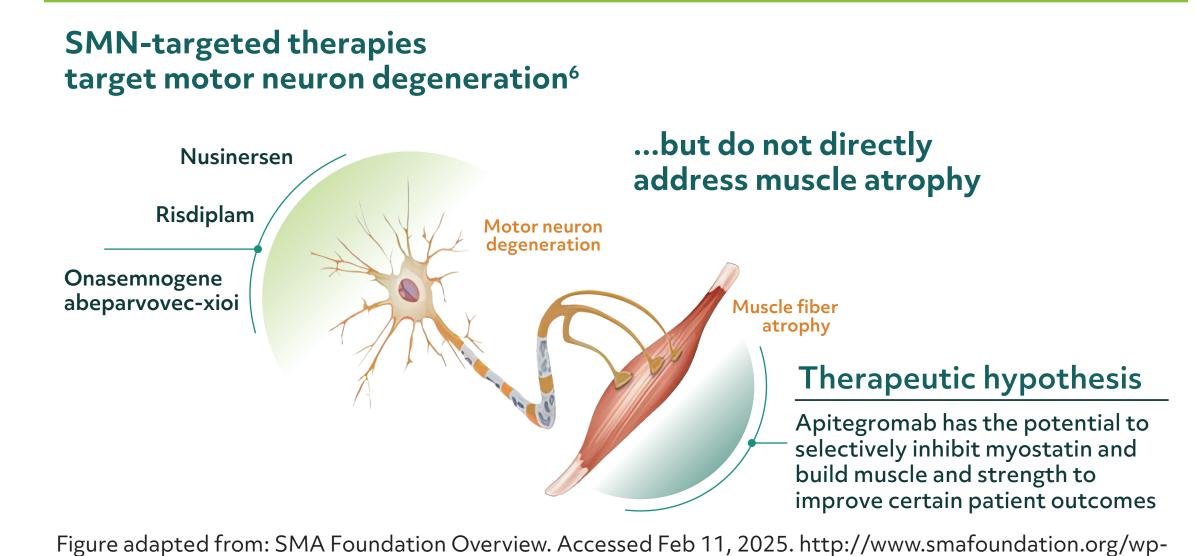
Trial design and rationale for OPAL, a Phase 2, randomized, double-blind study of apitegromab in patients aged <2 years with spinal muscular atrophy


Laurent Servais,¹⁻³ Thomas O. Crawford,⁴ Kelley Capocelli,⁵ Bert Yao,⁵ Giridhar S. Tirucherai,⁵ Yang Xu,⁵ Guolin Zhao,⁵ Jing L. Marantz,⁵ Basil T. Darras⁶

¹MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK; ²NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; ³Neuromuscular Reference Centre, University Hospital of Liège, Liège, Belgium; ⁴Johns Hopkins Medicine, Baltimore, MD, USA; ⁵Scholar Rock, Inc., Cambridge, MA, USA; ⁶Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

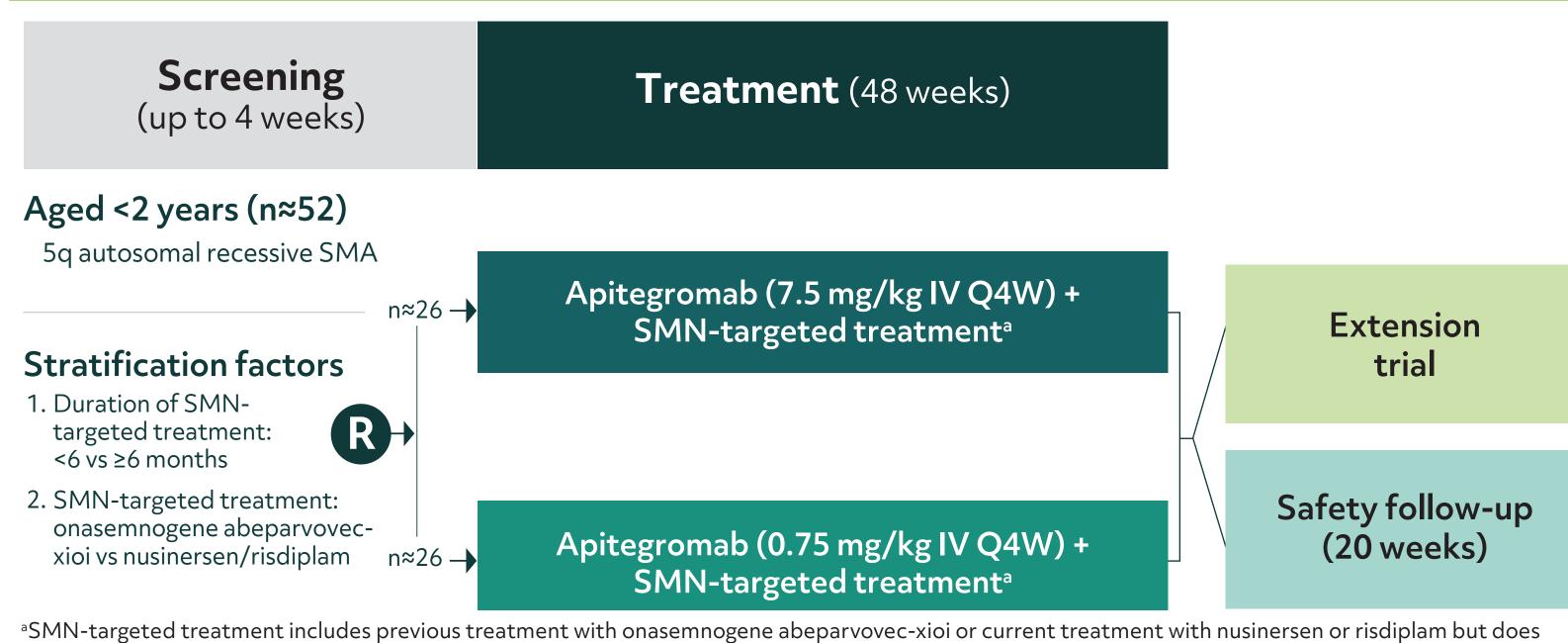
INTRODUCTION

- Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by neuronal degeneration and muscle atrophy, leading to weakness and progressive motor function loss¹
- Approved survival motor neuron (SMN)-targeted treatments slow disease progression and improve functional outcomes, but in many cases motor function deficits persist due to muscle atrophy²
- Apitegromab is an investigational, fully human monoclonal antibody that inhibits the activation of myostatin, a negative regulator of muscle mass, by selectively binding with high affinity to promyostatin and latent myostatin (**Figure 1**)^{3,4}
- In the randomized, double-blind, placebo-controlled, global Phase 3 SAPPHIRE trial (NCT05156320), apitegromab treatment resulted in statistically significant and clinically meaningful improvements in motor function and was well tolerated in participants aged ≥2 years with SMA Type 2 or 3⁵
- Given the potential advantages of preventing muscle atrophy at an early age, the Phase 2 OPAL trial was designed to expand the investigation of apitegromab to a younger population

Figure 1. Apitegromab mechanism of action

OBJECTIVE

content/uploads/2012/03/SMA-Overview.pdf.

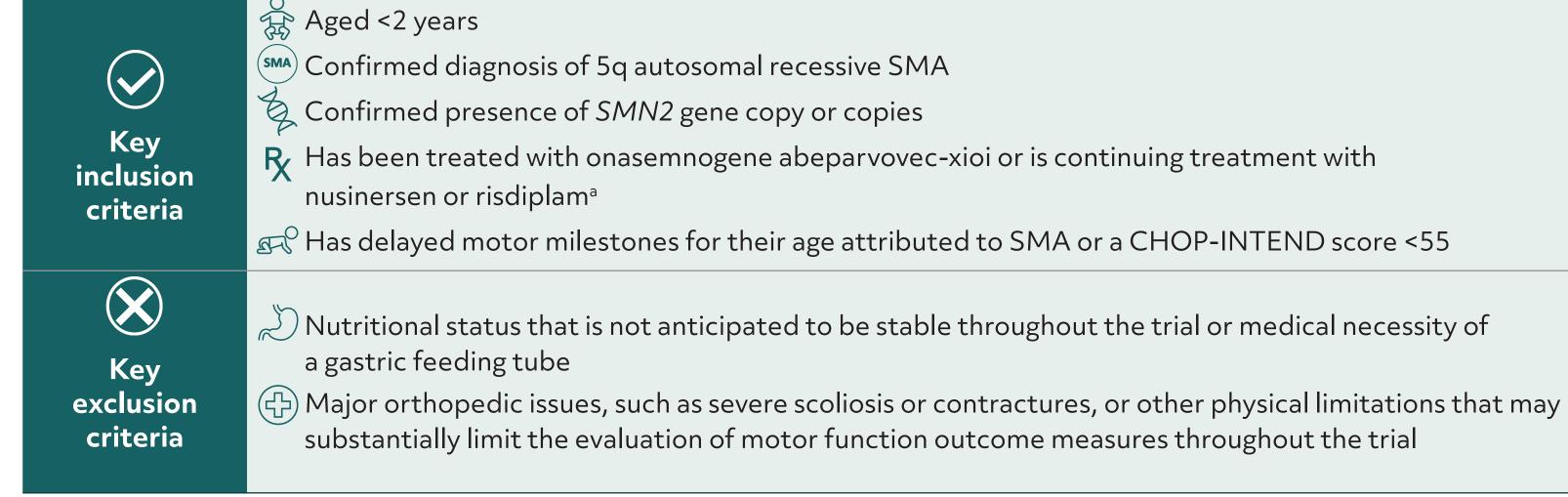

SMA, spinal muscular atrophy; SMN, survival motor neuron.

• The Phase 2 OPAL trial (NCT07047144) aims to assess the pharmacokinetics (PK), pharmacodynamics (PD), efficacy, safety, and tolerability of apitegromab in children aged <2 years with SMA

METHODS

- OPAL is a Phase 2, randomized, double-blind, multiple-dose trial of apitegromab for the treatment of children aged <2 years with SMA
- This trial is expected to be conducted across 30 sites in the United States and Europe
- Recruitment will aim for approximately 52 participants with SMA, who will be randomized 1:1 (n≈26/dose group) to receive apitegromab 0.75 or 7.5 mg/kg by intravenous infusion every 4 weeks (Figure 2)
- This trial will include a screening period of up to 4 weeks and a 48-week treatment period (12 doses), followed by either participation in an extension trial or a 20-week safety follow-up period
- Dose selection of apitegromab 0.75 and 7.5 mg/kg was informed by simulations using population PK and PK/PD modeling in people aged ≥2 years with SMA, incorporating body weight scaling and maturational changes in clearance
- Simulations indicate that participants aged <2 years require an approximately 25% lower dose (7.5 mg/kg) to achieve exposure similar to that in children aged 2-5 years (10 mg/kg) due to differences in maturational clearance
- Complete target saturation is predicted at the 7.5 mg/kg dose, whereas a 10-fold lower dose of 0.75 mg/kg would achieve approximately 50% of this PD effect and remain pharmacologically active
- An interim PK/PD analysis is planned when the 15th participant completes 12 weeks of treatment
- The 2 doses for this trial are expected to enable clear characterization of PK/PD and exposure-response relationships and identify the dose of apitegromab for people living with SMA aged <2 years

Figure 2. Trial design



^aSMN-targeted treatment includes previous treatment with onasemnogene abeparvovec-xioi or current treatment with nusinersen or risdiplam but does not include treatment with nusinersen or risdiplam after onasemnogene abeparvovec-xioi treatment.

IV, intravenous; Q4W, every 4 weeks; R, randomization; SMA, spinal muscular atrophy; SMN, survival motor neuron.

- Key inclusion criteria include age <2 years, confirmed diagnosis of 5q autosomal recessive SMA, and having received an SMN-targeted treatment (**Table 1**)
- Key trial endpoints are listed in **Table 2**
- Safety and tolerability will be assessed throughout the trial

Table 1. Key eligibility criteria

^aIndividuals who received or are scheduled to receive nusinersen or risdiplam after receiving onasemnogene abeparvovec-xioi are not eligible. CHOP-INTEND, Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders; SMA, spinal muscular atrophy.

Table 2. Key endpoints

endpoints

- Population model-based parameters, such as clearance, V_c , V_d , and V_p
- Serum concentrations of apitegromab and total latent myostatin
- Change from baseline in BSID-4 Gross Motor Subscale raw score at 48 weeks
- Relationship between serum concentrations of apitegromab and total latent myostatin
- Population PK/PD model-based parameters (eg, I_{max} , IC_{50} , and K_{out})
- Incidence of TEAEs and SAEs by severity

BSID-4, Bayley Scales of Infant and Toddler Development, Fourth Edition; IC₅₀, concentration of apitegromab to achieve half the inhibiting effect; I_{max} , maximum inhibiting effect; K_{out} , first-order degradation rate of total latent myostatin; PD, pharmacodynamics; PK, pharmacokinetics; SAE, severe adverse event; TEAE, treatment-emergent adverse event; V_c , central volume of distribution; V_d , volume of distribution; V_p , peripheral volume of distribution.

CONCLUSION

• The Phase 2 OPAL trial will be the first to evaluate apitegromab, a muscletargeted treatment, in children aged <2 years with SMA

References

Mercuri E, et al. Nat Rev Dis Primers. 2022;8(1):52.
 Crawford TO, et al. Neurology. 2024;102(5):e209151.
 Crawford TO, et al. Front Neurol. 2024;15:1419791.

4. Pirruccello-Straub M, et al. *Sci Rep.* 2018;8(1):2292. 5. Crawford TO, et al. *Lancet Neurol.* 2025;24(9):727-739. 6. Hua Y, et al. *Nature.* 2011;478(7367):123-126.

Acknowledgments

- We are grateful to all the patients who are willing to participate in this study and to their families, caregivers, healthcare professionals, and patient advocacy groups for their dedication and support.
- · Medical writing and éditorial support were provided by Aidan Moriarty, PhD, and Shannon Davis of Apollo Medical Communications, part of Helios Global Group, and funded by Scholar Rock, Inc.
- Project management support was provided by Taryn Bosquez-Berger, PhD, of Scholar Rock, Inc.

Disclosures

LS has received grants and personal fees from AveXis/Novartis Gene Therapies, Biogen, and Roche and personal fees from Biohaven, Cytokinetics, and Scholar Rock, Inc., outside the submitted work. TOC is the lead principal investigator of the Scholar Rock–sponsored, Phase 2 TOPAZ trial and a consultant and/ or advisory board member for AveXis/Novartis Gene Therapies, Biogen, Pfizer, and Roche/Genentech. KC, BY, GST, YX, GZ, and JLM are employees of and stockholders in Scholar Rock, Inc. BTD has served as an ad hoc scientific advisory board member for AveXis/Novartis Gene Therapies, Biogen, Roche/Genentech, Merck, Sarepta Therapeutics, and Scholar Rock, Inc.; steering committee member for the Roche FIREFISH and MANATEE studies; and Data and Safety Monitoring Board member for Amicus and Lexeo Therapeutics; he has no financial interests in these companies. He has also received royalties for books and online publications from Elsevier and Wolters Kluwer.

To download a copy of this poster, **scan QR code**.