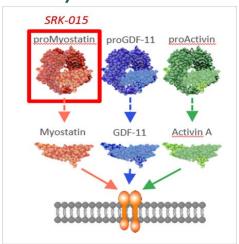
Clinical Development of SRK-015, a Fully Human Anti-proMyostatin Monoclonal Antibody, for the Treatment of Later-Onset Spinal Muscular Atrophy

George Nomikos, MD, PhD VP, Head of Medical Research Scholar Rock, Inc.

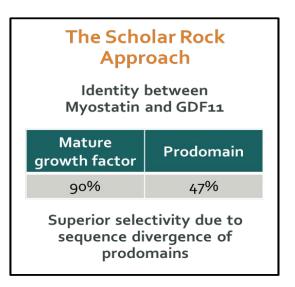
Cure SMA June 12th, 2020

Disclaimer

 SRK-015 is an investigational product candidate that is currently being evaluated in a clinical trial

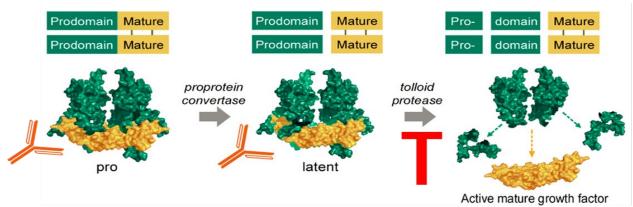

 SRK-015 has not been approved by the U.S. Food and Drug Administration (FDA), the European Commission, or any other health authority, and the safety and effectiveness of this molecule have not been established

Disclosures

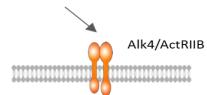

 George Nomikos is an employee of Scholar Rock and owns equity in the company.

SRK-015 is a Fully Human Monoclonal Antibody that Specifically Inhibits Myostatin Activation

Selective Targeting of ProMyostatin, the Myostatin Precursor

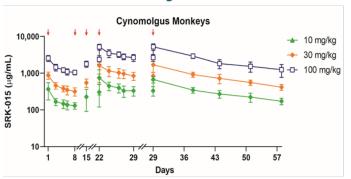


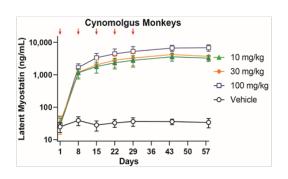
 SRK-015 does not bind to mature myostatin or any form of GDF11, Activin A, or other TGF-β family members



Pirruccello-Straub, et al., Sci Rep (2018) 8:2292

SRK-015 Blocks Cleavage of the Myostatin Prodomain


- Activation of myostatin requires two distinct proteolysis events that generate the active mature growth factor
- SRK-o15 binds to both proMyostatin and latent myostatin and inhibits tolloid-mediated cleavage of latent myostatin

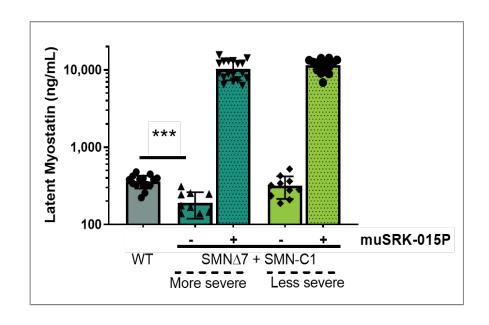

Pirruccello-Straub, et al., Sci Rep (2018) 8:2292

SRK-015 Displays a Favorable PK Profile in Nonhuman Primates with Robust PD (Target Engagement)

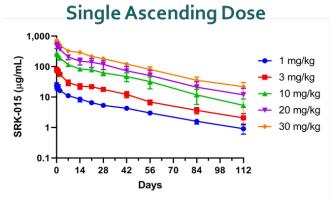
SRK-015 PK

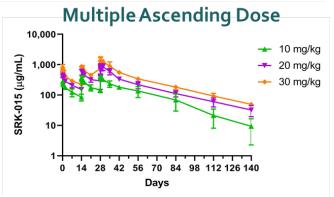
SRK-015 PD (Target Engagement)

SRK-015 displays similar PK and PD profiles across animal species


- Maximum serum concentration achieved 1-hour postdose
- Relative dose-proportional accumulation

- Latent myostatin levels increased with increasing doses (in a less than dose-proportional manner)
- Latent myostatin levels appear to plateau at all doses, suggesting target saturation


Data on file

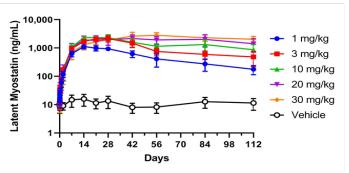

muSRK-015P Robustly Engages Latent Myostatin in a Mouse Model of SMA (SMNΔ7)

- Basal serum latent myostatin levels correlate with disease severity (based on the use of varying doses of SMN-C1), confirming presence of target in a disease setting
- muSRK-o15P results in robust accumulation of latent myostatin in serum, independently of basal levels
- In both severity models, inhibition of myostatin activation increases muscle strength

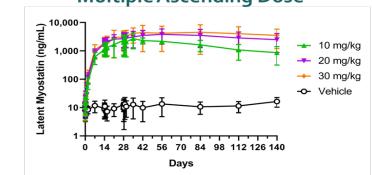
SRK-015 Phase 1 Study in Healthy Volunteers: PK Data Support Dosing Every 4 Weeks

SRK-015 Displayed Well-Behaved PK Profile

- Minimal variability observed, consistent with that commonly observed with monoclonal antibodies
- Dose-proportional serum drug exposure


Half-Life Supports Infrequent Dosing

- Serum half-life of 23-33 days across dose groups
- Supports planned evaluation of once every 4-week dosing in the Phase 2 trial


Data on file

SRK-015 Phase 1 Study in Healthy Volunteers: PD Data Demonstrate Robust Target Engagement

Single Ascending Dose

Multiple Ascending Dose

Robust Target Engagement Observed

 Single doses led to marked increases in serum concentrations of latent myostatin

Evidence Supports Durable Target Saturation

- Peak latent myostatin levels plateaued, starting with a single dose at 3 mg/kg, suggesting target saturation
- Plateau was sustained, demonstrating durability of effect

No apparent safety signals observed

No antidrug antibodies were detected
 PK/PD results informed Phase 2 dosing regimen

Data on file

SRK-015 Phase 2 Trial (TOPAZ) Design

	Cohort 1	Cohort 2	Cohort 3
Design	 N= 20; ages 5-21 Open-label, single-arm 20 mg/kg SRK-015 IV Q4W 12-month treatment period 	 N= 15; ages 5-21 Open-label, single-arm 20 mg/kg SRK-015 IV Q4W 12-month treatment period 	 N= 20; ages ≥2 Double-blind, randomized (1:1) to 2 mg/kg or 20 mg/kg SRK-015 IV Q4W 12-month treatment period
Patients	 Ambulatory Type 3 SMA Receiving treatment with approved SMN upregulator or as monotherapy 	 Type 2 or non-ambulatory Type 3 SMA Receiving treatment with approved SMN upregulator 	 Type 2 SMA Initiated treatment with approved SMN upregulator before age 5
Primary Objectives	SafetyMean change from baseline in RHS	SafetyMean change from baseline in HFMSE	SafetyMean change from baseline in HFMSE

Acknowledgements

- Phase 1 and 2 trial study investigators, site staff and participants
- Medpace
- Internal team Members:
 - Yung Chyung
 - Ryan larrobino
 - Doreen Barrett
 - Amy Place
 - Tiina Xu
 - Stephanie D'Eon
 - Mara Sadanowicz
 - Heather Faulds
 - Erin Treece
 - Shaun Cote
 - Ashish Kalra
 - Kimberly Long
 - o Deborah Meshulam
 - Ann Price
 - Mania Kavosi
 - Ping Huang